
SW Dependability SW Dependability
MethodsMethods

Maria Hernek, ESA/Estec
Maria.Hernek@esa.int

SW Dependability MethodsSAS July 2006 Slide 1

SW Dependability MethodsSW Dependability Methods

Why software dependability methods?

Static SW dependability methods

Worst Case Execution Analyse

How does cache effect WCEA

SW Dependability MethodsSAS July 2006 Slide 2

Software implements System functionality Software implements System functionality
Software is playing an
increasingly important role in
system functionality.

An exponential increase in On-
Board software functionality.

Increase in software complexity.

Amount of software on-board
increases, from few kbyte in
early 80th to many Mbytes today.

SOHO, 1995 2*64 KB
Rosetta, 2003, 2*1MB
ATV, 2006, 8MB

SW Dependability MethodsSAS July 2006 Slide 3

Software implements a large part of space systems functionality
the System Dependability and Safety approach needs to be supported
through correspondent Software Dependability and Safety methods
Software Dependability and Safety requirements need to be derived
from system Dependability and Safety recommendations

System functional Dependability and Safety needs to be
specified through functional software requirements.

Software Dependability and Safety is primarily to handle typical software
failures modes (e.g. deadlock, task overrun, buffer overflow, division by
zero).
Software Dependability and Safety requirements need to be specified to
ensure fault tolerance (e.g. through FDIR, watch-dog, exception handling,
etc.) and operational contingency.

Functional Sw Dependability and Safety Requirements : derived
from System Dependability and Safety
Specific Sw Dependability and Safety Requirements : defined by
Sw Dependability and Safety

System vs. Software Dependability and SafetySystem vs. Software Dependability and Safety

SW Dependability MethodsSAS July 2006 Slide 4

ECSS standard ECSS standard

Three branches:

ECSS M - Project Management

ECSS Q - Product Assurance

ECSS E - Engineering Three levels:

1-Level: Strategy

2-Level: Objective and Function

3-Level: Methods, procedures, tools
http://www.ecss.nl/

SW Dependability MethodsSAS July 2006 Slide 5

SW Fault handling activities, ECSS Q80SW Fault handling activities, ECSS Q80--0303

SW Fault Prevention

Methods

SW Fault Prevention

Methods
SW Fault Removal

Methods

SW Fault Removal

Methods
SW Fault Tolerance

Methods

SW Fault Tolerance

Methods

SW validation process

SW req. & architecture

engineering process

System engineering

process related to SW

SW design &

implementation

process

SW delivery & acceptance process

SW verification process

SW Dependability MethodsSAS July 2006 Slide 6

Methods identified in ECSS Q80Methods identified in ECSS Q80--03 to support the 03 to support the
assessment of software dependability and safetyassessment of software dependability and safety

Software Failure Modes Effects and Criticality Analysis (SFMECA)
Software Fault Tree Analysis (SFTA)
Hardware-Software Interaction Analysis (HSIA)
Software Hazard Analysis (HA)
Software Common Cause Failure Analysis (SCCF)
In service history - Re-use file

Those are all analysis activities
which do not require the execution of the software

SW Dependability MethodsSAS July 2006 Slide 7

SW Dependability Methods, objectiveSW Dependability Methods, objective

SW FMECA - Identify as early as possible the critical operations from
the fault tolerance point of view:

SW Fault preventive method, potential failures are identified and their
cause can be removed early in the development.
By making a systematic analysis of all SW functions during the
architectural design phase, possible sources of errors can be identified,
classified by criticality level.

SFTA – Verify that the SW design/implementation does not contribute
to System Feared Events
HSIA – Verify that Software correctly interacts with HW and that
all HW failure modes are considered

HW failure modes are taken into account in the software
requirements definition.
design characteristics will not cause the software to overstress
the HW, or adversely change failure severity consequences on
failures occurrence.

SW Dependability MethodsSAS July 2006 Slide 8

Dependability assessment methods applicable to life Dependability assessment methods applicable to life
cycle phasescycle phases

most applicable less applicable

Software FMECA

In Service History

Software Common Cause analysis

Software Hazard Analysis

Hw-Sw Interaction Analysis

Software Fault Tree Analysis

R
eq

ui
re

m
en

ts
 a

nd

A
rc

hi
te

ct
ur

e
 p

ha
se

D
es

ig
n

an
d

 Im
pl

em
en

ta
tio

n

ph
as

e

V
er

ifi
ca

tio
n

Te
st

in
g

O
pe

ra
tio

ns

M
ai

nt
en

an
ce

Engineering analysis

SW Dependability MethodsSAS July 2006 Slide 9

Design ConstraintsDesign Constraints

A number of Design & Coding Practices can be applied in order to
adopt specific architectural design choices to prevent or tolerate faults
implement specific functions to prevent faults
implement specific recovery actions to tolerate faults

Design & Coding Practices
Defensive Programming
Assertion Programming
Recovery Blocks
Segregation/Partitioning
Watchdog
Alive flag

A number of Dependability and Safety constraints force the adoption of
Techniques and rules during design and implementation activities

SW Dependability MethodsSAS July 2006 Slide 10

Fault Removal Techniques

Regression Analysis

Test Analysis
Test Result Analysis
Test Coverage Analysis
Test Witnessing
Fault Seeding
Mutation Analysis
Sensitivity Analysis

Test Data Selection
Boundary Value Analysis
Equivalence Partitioning

Black Box Testing
Back-to-Back Testing
Interface Testing
Stress Testing
Statistical Testing
Monte-Carlo Simulation
Simulation

White Box Testing
Statement Coverage
Branch Coverage
Path Coverage
Basis Path Coverage
Multiple Condition Coverage
Linear Code Sequence and Jump Coverage
Data Flow Coverage
Loop Testing
Cause-Effect Graphing Technique
Fault Injection
Run-Time Anomaly Detection

Testing activities
which require the execution of the software

SW Dependability MethodsSAS July 2006 Slide 11

SW Dependability MethodsSW Dependability Methods

Why software dependability methods?

Static SW dependability methods

Worst Case Execution Analyse

How does cache effect WCEA

SW Dependability MethodsSAS July 2006 Slide 12

SW Worst Case Execution AnalyseSW Worst Case Execution Analyse

WCEA verifies performance requirements on a real time
system
Identifies and measure Worst Case Execution Timing
(WCET)
Results are used to assess performance and
schedulability
WCET, static or dynamic

Static analyse: find the longest feasible execution path, calculate execution
time by support of processor model

+ Real HW not needed
- Data driven systems difficult to simulate

Dynamic analyse: use sample execution times with worst case initial state and
compute overall execution times

+ Processor model not needed
- Difficult to find WC initial state

SW Dependability MethodsSAS July 2006 Slide 13

Cache processorCache processor

Cache memory is used for high performance processor as
speed gap between processor and memory

Cache memory is relatively small and very fast

Cache memory stores most recently accessed memory words,
other schemes exist

Instruction or data cache

Useful terminology: read-hit, read-miss, write-hit, write-miss,
cache conflict, cache thrashing

Cache replacement policies: Least recently used (LRU)

SW Dependability MethodsSAS July 2006 Slide 14

LEON processor, architectureLEON processor, architecture

SW Dependability MethodsSAS July 2006 Slide 15

LEON processor characteristics LEON processor characteristics
CMOS 0.18 µm technology
LEON2-FT Sparc V8 with FPU
PCI 2.2
86 MIPs / 23 MFlops at 100 MHz
700 mW at 100 MHz – 150 MIPs / W
No Single Event Latch up below 70 MeV/mg/cm2

Separate instruction and data cache (Harvard architecture)
Set-associative caches: 1 - 4 sets, 1 - 64 kbytes/set. Random,
LRR or LRU replacement
Data cache snooping (DMA)

SW Dependability MethodsSAS July 2006 Slide 16

Cache impact on execution timeCache impact on execution time

Cache misses and conflicts have several negative effects on
program execution time:

Layout impact: execution time depends on location in
memory

Sequential impact: execution time depends on actions
taken earlier in program which influenced the state of
cache

Concurrent impact: execution time depends on actions
taken by interrupts or higher-priority pre-empting task

SW Dependability MethodsSAS July 2006 Slide 17

Cache control mechanismsCache control mechanisms

Freeze cache on interrupt or by
program control – reduce
concurrent impact of cache
Lock cache – certain parts of
cache will remain – reduce
sequential and concurrent impact
of cache
Data cache write buffer
Cache size is configurable – can
be assigned specific memory
areas
Flush cache – clear cache content
Etc.

SW Dependability MethodsSAS July 2006 Slide 18

Verification problems caused by cacheVerification problems caused by cache

To discover performance problems early - Need to predict SW
execution times (e.g. for critical paths) at early stage in
development.

Predictions may be based on measurements of existing similar SW and
HW or estimated number machine instructions - Useful methods but
cache adds uncertainty

Performance verification of modules executed on real HW - First
indication on prediction certainty

Measure execution time for test cases with different scenarios -
Sequential and concurrent cache impacts varies for different test runs.
Layout cache impacts as flight SW memory addresses are different

Schedulability analysis – verification of real-time performance
Measure WCET for tasks, synchronization routines and kernel operations
– cache adds uncertainty

SW Dependability MethodsSAS July 2006 Slide 19

Design and code patterns influencing cache Design and code patterns influencing cache
performanceperformance

Cache killer pattern
A program contains a structure that matches a specific pattern
that makes the cache work poorly

Cache risk pattern
A program contains a structure that under specific circumstances
is a cache killer pattern but under other circumstances the cache
works OK

Almost cache killer or cache risk
Programs which becomes cache killer or cache risk during its
evolution, e.g. in-flight patches

SW Dependability MethodsSAS July 2006 Slide 20

Cache killer patternCache killer pattern

procedure P is
begin

loop
Pkg1.P1; -- call procedure P1 from package Pkg1
Pkg2.P2;
Pkg3.P3;
Pkg4.P4;
Pkg5.P5;

end loop;
end P;

Assume that each package is placed in different 8KB areas and the
cache is set for 8KB cache set.

SW Dependability MethodsSAS July 2006 Slide 21

Cache risk patternCache risk pattern

procedure P is
Begin

loop
Pkg1.P1; -- call procedure P1 from package Pkg1
Pkg2.P2;

If Rare_Condition then
Pkg3.P3; -- call P3, but only rarely

end if;

Pkg4.P4;
Pkg5.P5;

end loop;
end P;

As long as Rare_Condition is false the loop calls only four packages and
the I-cache works well.

SW Dependability MethodsSAS July 2006 Slide 22

Concurrent impact patternsConcurrent impact patterns

task body Low is
begin

loop
Pkg1.P1;
Pkg2.P2;

.

.

.
Pkg4.P4;
Pkg5.P5;

end loop;
end Low;

task body High is
begin

……

<wait for something>;

Pkg3.P3;
<wait for something>;

……
end High;

pre-emption

resumption

Assume that task Low executes with no cache misses

SW Dependability MethodsSAS July 2006 Slide 23

Questions we need to answer:Questions we need to answer:

Cache aware compilers and linkers are still in research state

Can we and should we identify and avoid cache killer/risk
structures?
Is the cache becoming a SW design driver?

What is the magnitude of cache killer/risk effect?
How much increases execution time?
How much performance margin is needed?

What is your WCET with a cache memory?
Do you have confidence in your Schedulability analysis?
Is there a need for “performance failure tolerance”?

SW Dependability MethodsSAS July 2006 Slide 24

Software Dependability MethodsSoftware Dependability Methods

Thank You for the attention!

Questions?

Maria Hernek, ESA/Estec
Maria.Hernek@esa.int

